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Abstract— The high theoretical specific energy density
of lithium-sulfur (Li-S) batteries positions them as an ad-
vanced next-generation battery system to overcome the
limitations of conventional Li-ion batteries. Accurate es-
timation of the mass evolution of active sulfur species
in Li-S cells is required, not only to monitor degradation
mechanisms inside the cell, but also to enable safe and ef-
ficient operation. The state estimation problem for electro-
chemical models of Li-S cells is challenging, mainly due to
the complex dynamics during discharge/charge processes.
In this work, we consider a three-step zero-dimensional
electrochemical model with the “shuttle effect” for state
estimation. The model’s state observability is analyzed and
the parameters are identified using experimental data. An
extended Kalman filter is directly applied to the nonlinear
differential algebraic equation (DAE) system to estimate the
differential and algebraic states from the measurements of
voltage and current only. The simulation and experimental
results demonstrate the effectiveness of the proposed ob-
server design.

Index Terms— Lithium-Sulfur Battery, State Estimation,
Observability, Kalman Filter

I. INTRODUCTION

Current lithium-ion battery (LIB) technology, unfortunately,
does not meet the energy density requirements for fully elec-
trifying long-haul trucks, aircraft, and other mass or volume
sensitive applications. Therefore, developing new battery tech-
nologies beyond the horizon of Li-ion chemistries is significant
for applications in high energy density storage systems [1].
Lithium-sulfur (Li-S) batteries have attracted attention today
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due to their high theoretical energy density (2500 Wh·kg−1),
which results from the multi-electron electrochemical redox
reaction between lithium (Li) and sulfur. However, their
practical use at a large scale is hindered by low sulfur
utilization and poor cycling stability, which are attributed to
the inferior electronic conductivity of sulfur, the diffusion
and migration of soluble polysulfide intermediates (“shuttle
effect”), and unstable Li metal anode [2]. To date, great efforts
on cell design have been made to overcome these obstacles,
including host material synthesis, electrolyte optimization, and
lithium anode protection [3]. Besides, theoretical modeling and
estimation techniques have also been explored in recent years,
which not only help gain important insights into the complex
mechanisms for the rational design of better materials, but
also allows the cells to be controlled in a reliable and safe
way in real applications [4]. For batteries that are used in
EVs, a battery management system (BMS) [5] is required to
monitor the internal state of the battery, optimize usage, and
prolong cycle life. Therefore, the development of an advanced
BMS for Li-S batteries is urgently needed to estimate the
internal electrochemical kinetics as well as internal states, i.e.
estimation of the state of charge (SOC) and state of health
(SOH).

Traditionally, estimation methods in LIBs rely on two
key model features: (i) the relationship between open-circuit
voltage (OCV) and SOC is a bijection [6], and (ii) SOC
is simply a scaled integral of electrical current [7]. These
properties do not exist in Li-S batteries. First and foremost, the
literature does not provide a precise mathematical definition
of SOC with respect to the mass of sulfur species, to the
authors’ best knowledge. Second, the dynamics are charac-
terized by a nonlinear differential-algebraic structure, which
cannot be simply boiled down to the two aforementioned LIB
model features. Finally, the voltage curve exhibits a wide flat
region, which yields observability challenges, somewhat like
lithium iron phosphate cells. Additionally, the “shuttle effect”
induces a self-discharge behavior where sulfur specifies will
evolve without an externally applied current. Consequently, the
Coulomb counting method cannot be used for accurate SOC
estimation [8], [9].

Model-based estimation methods have been explored for
accurate online state estimation. Equivalent circuit models
(ECMs) [10], [11] and electrochemical models (EMs) [12]–
[14] are the most studied models for LIBs in literature.
ECMs have become the main battery model for online state
estimation in EVs because of their relatively simple structure
and low computational complexity. The main structure of



ECMs for Li-S batteries is almost identical to that of LIBs.
The discharge/charge behavior with current- and temperature-
dependent parameters can be well reproduced [15]–[18].
Methods that combine ECMs with adaptive filters have been
adopted for SOC estimation in Li-S cells [19] . However,
the convergence property deteriorates with increasing initial
condition errors and increasingly dynamic current profiles.
Accordingly, some joint-estimators of parameters and SOC
was then developed to further enhance estimation accuracy
and robustness [20]. Despite the computational efficiency of
ECMs, the true electrochemical processes inside Li-S batteries
cannot be accurately represented across a range of operating
conditions in real-life applications.

EMs provide insight into the internal electrochemical ki-
netics and Li-ion transport behavior. In literature, the most
studied EMs for LIB are the Pseudo-Two-Dimensional (P2D)
model [21] and the Single Particle Model (SPM) [12], [13],
[22]. However, EM-based estimation methods typically require
more sophisticated algorithm designs, due to the complicated
partial differential equations and many involved parameters,
which is still a key challenge in on-line applications. That
issue becomes even worse for Li-S batteries. Various electro-
chemical models have been developed to capture important
physical phenomena inside the Li-S battery, such as reac-
tion mechanisms, precipitation/dissolution processes, transport
limitations, and the shuttle effect [23]–[27]. Most of these
models can represent the key features of the voltage profiles:
the high and low voltage plateaus and the voltage dip in
the transition region. But even for one-dimensional models,
the complicated reaction steps and involved sulfur species
require a large number of parameters, making it less practical
for real-time control and estimation. Recently, a simplified
model — the zero-dimensional (0-D) model – has shown
its potential as an efficient tool for monitoring and control
because of its relatively low-order structure [28]. In [29], Xu
et al. demonstrated parameter identification and sensitivity
analysis for a set of zero-dimensional models, based on the
number of possible reaction pathways. The most significant
parameters and the fitting performance of the model have
been evaluated based on experimental data. The model with
the best fitting performance was then implemented with an
UKF for online estimation of the mass evolution of sulfur
species in the discharging process. The estimation problem
was simplified by converting the DAEs to ordinary differential
equations (ODEs), which may not always be possible. Besides
that, the shuttle effect was not considered in their model, which
is a crucial feature of Li-S batteries that largely affects battery
dynamic behavior.

For Li-S batteries, the battery capacity is highly dependent
on the active sulfur species inside the cell, which means that
the SOC and SOH are both determined by the mass evolution
of various polysulfide species. Therefore, it is crucial to accu-
rately estimate these sulfur species during the discharge pro-
cess. However, estimation based on zero-dimensional models
suffers from several challenges. First, the complex DAEs result
in a nonlinear relationship among the measurable signals,
system states, and parameters. Second, as also mentioned in
[29], the sensitivity of the output voltage with respect to the

system states vanishes in the low voltage plateau, making
it weakly observable. Third, the definition of SOC in Li-S
cells is challenging because of multiple reduction pathways
associated with different reacting species. At last, the analysis
and estimator design tools for nonlinear DAEs still need to be
further explored for battery estimation problems.

In our preliminary work [30], we have proposed a state
estimation algorithm for a two-step zero-dimensional model
using voltage and current measurements only, which enables
the monitoring of the sulfur species and the reaction kinetics
accurately during the battery discharge process. However, the
simplified one-step reaction in high plateau cannot accurately
capture the slope of the discharge voltage in reality. To over-
come these challenges, the main contributions that separate
this work and our preliminary studies are

1) The model and estimation algorithm are rigorously
validated through experimental data to verify the per-
formance and robustness that reflects the real-world
application scenarios.

2) The two-step zero-dimensional model is extended by
adding a third step - a reduction reaction in the high
plateau to more accurately capture the voltage dynamics.
Additionally, the shuttle effect is included in this model,
which is a non-negligible phenomenon in Li-S cells.

3) The local observability is analyzed using DAE tech-
niques without prior model reductions. We then employ
an extended Kalman filter directly based on the DAE
system to estimate the internal states, which is further
validated using experimental data.

4) The calculation of SOC for Li-S cells is proposed for
the first time using sulfur species to reflect the effects
of shuttling - a significant improvement against the
heuristic coulomb counting method.

The reminder of this paper is structured as follows. Section
II introduces the zero-dimensional electrochemical model and
the DAE system. Section III analyzes the local observability of
the nonlinear DAE system. A parameter identification process
with experimental data is presented in Section IV. Section
V presents the proposed EKF algorithm for state estimation.
Simulation and experimental results are provided in Section
VI. Section VII concludes this work.

II. LI-S BATTERY MODEL

The Li-S battery cell is mainly composed of a metallic Li
anode, an elemental sulfur cathode, an organic electrolyte,
and a separator, as presented in Fig. 1(a). During a typical
discharge process, Li-ions are electrochemically stripped from
the Li metal anode and move to the cathode via the electrolyte.
Elemental sulfur S08 at the cathode side undergoes a series of
complicated electrochemical and chemical reactions to form
the final discharge product Li2S, involving the formation of
intermediate lithium ploysulfides (LiPSs). The corresponding
reactions operate in reverse to convert solid Li2S to dissolved
LiPSs and then to elemental S08 upon charging [31]. Fig. 1(b)
illustrates the typical two-plateau discharge/charge voltage
profile of Li-S batteries. The high plateau, at approximately
2.4 V, involves the reduction of sulfur to Li2S4 via multi-
higher-order Li2Sn (4 ≤ n ≤ 8). Then, on the low plateau



Fig. 1. (a) Li-S cell structure. (b) Galvanostatic discharge voltage profile
and the involved polysulfides in I: high voltage plateau and II: low voltage
plateau.

at about 2.1 V, short-chain LiPSs are converted to solid
Li2S. During the discharge process, the intermediate LiPSs
can easily dissolve into the organic electrolyte solution and
then migrate between the cathode and anode, called the
“shuttle effect”, resulting in the loss of active material and
low Coulombic efficiency.

A. Zero-Dimensional Model
A three-step zero-dimensional model is used in this study,

which follows the derivations in [28], [32], [33]. Compared
to the two-step model in our previous work [30], the time
evolution of S2−6 is considered in the high plateau. Fig. 2(a)
illustrates the conversion process from the initial sulfur S8 into
the final discharge product Sp, and the corresponding three-
step electrochemical reaction chain is described as follows:

3

8
S08 + e− ←→ 1

2
S2−6 , (1)

S2−6 + e− ←→ 3

2
S2−4 , (2)

1

6
S2−4 + e− ←→ 2

3
S2− ↓ . (3)

To simplify the model, this zero-dimensional model only
considers the sulfur evolution reactions on the cathode side,
and the anode overpotential is neglected under the assumption
of unlimited Li on the anode side [34]. As a 0-D model, the
diffusion limitations of multi-component mass transport in the

Fig. 2. (a) A schematic illustration of the total reaction pathway during
discharge. (b) Block diagram of zero-dimensional model.

electrolyte have been ignored, which still enables reasonably
accurate discharge predictions compared to one-dimensional
models [28]. The symbol S2− ↓ represents the precipitation
of liquid phase S2− into solid Sp in the low plateau, which is
modeled by both the precipitation rate (kp) and the saturation
mass of Sp in the electrolyte (S2−

∗ ). These two precipitation-
related parameters determine the voltage dip and the low
plateau. In this work, we also consider the “shuttle effect”,
which has not been included in [29]. It is represented by
the shuttle constant (ks), which affects the mass evolution of
soluble polysulfide species in the high plateau. The dissolved
sulfur reacted at anode is neglected, meaning that no loss of
total sulfur mass occurs due to the “shuttle effect”.

The mass evolution of sulfur species in the zero-dimensional
model in Fig. 2(b) is described by the following dynamics:

ẋ1 = − 3

8

nS8MS

neF
iH1 − ksx1, (4)

ẋ2 =
1

2

nS6MS

neF
iH1 + ksx1 − ksx2 −

nS6MS

neF
iH2, (5)

ẋ3 =
3

2

nS4MS

neF
iH2 + ksx2 −

1

6

nS4MS

neF
iL, (6)

ẋ4 =
2

3

nSMS

neF
iL − kpx5(x4 − S2−

∗ ), (7)

ẋ5 = kpx5(x4 − S2−
∗ ), (8)

where x1, x2, x3, x4, x5 denote the mass of sulfur species
S8,S

2−
6 ,S2−4 ,S2−,Sp, respectively. The mass evolution of

sulfur species in each reaction are governed by the related
reaction currents, together with the effect of shuttling and
precipitation. The term ksxi in dynamics (4)-(6) represents the
effect of shuttling on mass evolution of high-order polysulfides
and the precipitation is modelled by a precipitation rate kp
in dynamics (7)-(8). The model parameters are enumerated
in Table I. Next, Nernst equations are used to calculate the
equilibrium potentials for reactions (1)-(3) according to

EH1 = E0
H1 −

RT

F

(
−3

8
ln
( x1

nSMSv

)
+

1

2
ln
( x2

nS6MSv

))
,

(9)



TABLE I
ZERO-DIMENSIONAL MODEL PARAMETERS

Notation Name Units
MS Molar mass of S [g/mol]

nS8,nS6,nS4,nS Number of S atoms in polysulfide [-]
ne Number of electron per reaction [-]
F Faraday’s constant [C/mol]
R Gas constant [J/K/mol]
T Temperature [K]
ks Shuttle constant [s−1]
kp Precipitation rate [s−1]
S2−
∗ S2− Saturation mass [g]

E0
H1 Standard potential for reaction 1 [V]

E0
H2 Standard potential for reaction 2 [V]
E0

L Standard potential for reaction 3 [V]
i0H1 Exchange current density for reaction 1 [A/m2]
i0H2 Exchange current density for reaction 2 [A/m2]
iL,0 Exchange current density for reaction 3 [A/m2]
x0
j Initial mass of species j [g]
I Applied current [A]
ar Active reaction area [m2]
a0r Initial active reaction area [m2]
γ Power of the relative porosity [-]
ω Relative porosity change rate constant [1/g]
v Electrolyte volume per cell [L]

ηH1,ηH2,ηL Surface overpotentials [V]

EH2 = E0
H2 −

RT

F

(
− ln

( x2

nS6MSv

)
+

3

2
ln
( x3

nS4MSv

))
,

(10)

EL = E0
L −

RT

F

(
−1

6
ln
( x3

nS4MSv

)
+

2

3
ln
( x4

nSMSv

))
.

(11)

The reaction currents in the three-step electrochemical re-
actions (1)-(3) are described by Butler-Volmer equations

iH1 = −i0H1ar

·

[(
x1

x0
1

)− 3
8
(
x2

x0
2

) 1
2

e
FηH1
2RT −

(
x1

x0
1

) 3
8
(
x2

x0
2

)− 1
2

e−
FηH1
2RT

]
,

(12)

iH2 = −i0H2ar

·

[(
x2

x0
2

)−1 (
x3

x0
3

) 3
2

e
FηH2
2RT −

(
x2

x0
2

)(
x3

x0
3

)− 3
2

e−
FηH2
2RT

]
,

(13)

iL = −i0Lar

·

[(
x3

x0
3

)− 1
6
(
x4

x0
4

) 2
3

e
FηL
2RT −

(
x3

x0
3

) 1
6
(
x4

x0
4

)− 2
3

e−
FηL
2RT

]
.

(14)

The effect of the active reaction area ar on the reaction cur-
rents is also considered. It is directly related to the precipitate
according to

ar = a0r(1− ω · x5)
γ . (15)

The driving force for a reaction to occur at the cathode side
is the surface overpotential, which is obtained by the difference

between the Nernst potential and the voltage of the cell (V ),

ηH1 = V − EH1, (16)
ηH2 = V − EH2, (17)

ηL = V − EL. (18)

The cell voltage is the measurable output of the system, written
compactly as

y(t) = h(x(t), z(t)), (19)

where the nonlinear output function h : R5 × R3 → R3 takes
the form

h(x, z) =
E0

H1 −
RT

F
(−3

8
ln
( x1

nS8MS8v

)
+

1

2
ln

( x2

nS6MS8v

)
) + ηH1

E0
H2 −

RT

F
(− ln

( x2

nS6MS8v

)
+

3

2
ln

( x3

nS4MS8v

)
) + ηH2

E0
L − RT

F (− 1
6 ln

(
x3

nS4MS8v

)
+ 2

3 ln
(

x4

nSMS8v

)
) + ηL

 .

(20)

The output vector y(t) = [y1(t) y2(t) y3(t)]
⊤ provides the

measured output voltage of Li-S batteries produced from the
high and low voltage plateau,

y1(t) = ηH1(t) + EH1(t), (21)
y2(t) = ηH2(t) + EH2(t), (22)
y3(t) = ηL(t) + EL(t). (23)

and y1(t) = y2(t) = y2(t) = V (t), which are (equivalent)
measured signals.

Finally, the measured cell current I is described by the
summation of three reaction currents according to charge
conservation, i.e.,

I = iH1 + iH2 + iL. (24)

Remark 1. The thermal effects are also critical to battery
performance and plays a critical role in the dynamics of
sulfur evolution. However, due to lack of experimental data
and advanced characterization techniques to study the thermal
dynamics of Li-S cells, it is challenging to properly integrate
and validate a proper temperature model. This aspect will be
considered in future works.

B. Conservation of Sulfur

A critical mathematical property of the model is that sulfur
mass is neither created nor destroyed, due to incorrect model-
ing. We refer to this property as conservation of sulfur mass.
Mathematically:

d

dt
mS(t) = 0, mS(t) = x1(t)+x2(t)+x3(t)+x4(t)+x5(t)

(25)
It is straight-forward to verify the conservation of sulfur mass
equation above by substituting the dynamics (4)-(8).



C. Equilibrium Analysis

In this subsection, we analyze the equilibrium structure of
the 0-D electrochemical model without the shuttle effect. To
start, we specific the assumptions used in this equilibrium
analysis:

• No shuttle effect: ks = 0.
• Zero current: iH1 = iH2 = iL = I = 0.
• Steady-state conditions: ẋi = 0, for i = 1, 2, 3, 4, 5 in

(4)-(8).
• The equilibrium voltage V eq is known.
• The total mass of sulfur species mS is known.

Then the state equilibrium (xeq
1 , xeq

2 , xeq
3 , xeq

4 , xeq
5 ) satisfies the

following set of equations:

V eq = E0
H1 −

RT

F

(
−3

8
ln
( xeq

1

nSMSv

)
+

1

2
ln
( xeq

2

nS6MSv

))
,

(26)

V eq = E0
H2 −

RT

F

(
− ln

( xeq
2

nS6MSv

)
+

3

2
ln
( xeq

3

nS4MSv

))
,

(27)

V eq = E0
L −

RT

F

(
−1

6
ln
( xeq

3

nS4MSv

)
+

2

3
ln
( xeq

4

nSMSv

))
,

(28)
mS = xeq

1 + xeq
2 + xeq

3 + xeq
4 + xeq

5 , (29)

0 = xeq
5 (xeq

4 − S2−
∗ ). (30)

Notice that (26)-(30) comprise five equations and five un-
knowns - the equilibrium states. Since this system of equations
is nonlinear, a unique solution is not guaranteed. This contrasts
with many electrochemical Li-ion battery models (e.g. Single
Particle Model), and even equivalent circuit models of Li-S
cells. Namely, there is no analog to an “open circuit voltage”
function which serves as a bijective mapping between the
internal states (i.e. element concentrations or masses) and volt-
age at equilibrium. Nevertheless, two cases for the solutions
exist. From (30), we can derive two possible solutions: xeq

5 = 0
or xeq

4 = S2−
∗ . We detail both:

• Equilibrium without precipitate: xeq
5 = 0. Fig. 3(a)

visualizes the equilibrium state values as a function of
the equilibrium voltage V eq.

• Equilibrium with precipitate: xeq
4 = S2−

∗ . Fig. 3(b)
visualizes the equilibrium state values as a function of
the equilibrium voltage V eq.

D. SOC Definition

State of charge (SOC) represents the available discharge
capacity in a battery. It is commonly defined as the ratio of
the remaining capacity to its maximum capacity [35]. For Li-
S batteries, the available capacity is determined by the mass
evolution of active sulfur species during battery discharge.
Unlike Li-ion batteries, where the SOC can be calculated by
the average Li concentration in the solid phase of the negative
electrode, it is challenging to define SOC based on polysulfide
species in Li-S cells. The multiple reduction reactions with
different sulfur species during discharge may lead to multi-
ple SOC definitions associated with different sets of sulfur

(a)

(b)

Fig. 3. State equilibria as a function of voltage V eq. (a) equilibrium
without precipitate, and (b) equilibrium with precipitate.

Fig. 4. Mass evolution of reaction products in each reaction and the
involved electron transfer.

species. Here we propose a mathematical SOC definition by
considering multiple sulfur species, which reflects the “shuttle
effect” and the related self-discharge behavior. As illustrated
in Fig. 4, the reactions (1)-(3) occur simultaneously during
discharge. The moles of electrons consumed to produce the
sulfur products in each reaction (S2−6 , S2−4 , and S2−) are first
calculated. Then, this is use to calculate the released capacity,
in amp-hours, of each reaction:

CH1(t) =
8

3

x100
1 − x1(t)

nS8MS

F

3600
, (31)

CH2(t) =
3

2

[
x4(t)− x100

4

nSMS
+

x5(t)− x100
5

nSMS

]
F

3600
, (32)

CL(t) =
2

3

[
x3(t)− x100

3

nS4MS
+

x4(t)− x100
4 + x5(t)− x100

5

4 · nSMS

]
× F

3600
, (33)

where CH1, CH2, and CL are the capacity released in each
reaction, x100

i is the mass of sulfur species i at 100% SOC,
and the factor 3600 is used to convert from Coulombs to Ah.
The total released capacity at time step t can be obtained as

Ct(t) = CH1(t) + CH2(t) + CL(t). (34)

The SOC definition can then be given by

SOC(t) = 1− Ct(t)

Cmax
, (35)



where Cmax is the maximum capacity in the cell. Based on
this definition, we derive a differential equation governing the
evolution of SOC(t),

˙SOC(t) =
−1

3600 · Cmax

[
I(t) +

Fks
MS

(
1

3
x1(t) +

1

6
x2(t)

)]
.

(36)
This equation provides several important insights. First, in the
absence of the shuttle effect (i.e. ks = 0), our SOC definition
reduces to Coulomb counting. In the presence of the shuttle
effect (i.e. ks > 0), then SOC dissipates in proportion to the
masses of S08 and S2−6 – a property that is distinctly different
than Li-ion cells. The factors of 1

3 and 1
6 arise from the

stochiometric ratios of sulfur atoms in S08 and S2−6 to electrons
in reactions (1) and (2), respectively.

Remark 2. Although this work focuses on the discharge
behaviors of Li-S cells, the same strategy can be used to define
the SOC during charging. Since the three-step electrochemical
reaction chain (1)-(3) is reversible, the total released capacity
of each reaction during charging can be calculated based
on the reaction products S2−4 , S2−6 , and S08 which is slightly
different than that of the discharging process.

E. 0-D Li-S Model as a Differential-Algebraic System
To facilitate the subsequent model analysis and state ob-

server designs, a nonlinear differential-algebraic system can
be formulated by arranging the nonlinear dynamic equations
(4)-(8) and the nonlinear algebraic constraints (9)-(24) into the
following compact state-space form,

ẋ(t) = f(x(t), z(t)), (37)
0 = g(x(t), z(t), u(t)), (38)

y(t) = h(x(t), z(t)), (39)

where x = [x1 x2 x3 x4 x5]
⊤ ∈ Rnx with nx =

5 is the differential state vector representing the mass of
sulfur species for S08, S2−6 , S2−4 , S2−, Sp, respectively, and
z = [iH1 iH2 iL]

⊤ ∈ Rnz with nz = 3 is the algebraic
state vector corresponding to the currents related to the three
reactions (1)-(3). Function g : R5×R3×R→ R3 is given by

g(x(t), z(t), u(t)) =

[
M1z − I
M2y

]
, (40)

where M1 = 11×3 is a row vector of ones with 3 components
and

M2 =

[
1 0 −1
0 1 −1

]
. (41)

In particular, equation (40) is obtained by substitution of
equations (9)-(14) into equations (16)-(18). The 0-D model
(37)-(39) can be conveniently verified to be a semi-explicit
DAE of index 1 as ∂g/∂z has full rank (invertible) [36].
Typically, a DAE system can be analytically reduced to an
ODE system if the function g is linear in z [37]. However, in
our case, function g is highly nonlinear in both z and x, which
indicates that it is not straight-forward nor necessarily possible
to obtain a close-form solution of constraint (38). Moreover,
the original DAE system cannot be fully represented from the
reduced-order ODE system and the physical significance of

the differential-algebraic states will be surpressed after model
reduction [38]. Therefore, we will conduct all analysis and
observer designs based on this nonlinear DAE system without
model reductions.

III. OBSERVABILITY ANALYSIS

An observability analysis is performed on this DAE system
to evaluate whether the differential and algebraic states can be
uniquely determined from measurements of input and output
signals. In our study, if the nonlinear DAE system is not
observable, this means that it is not possible to estimate some
internal states from the measurements of current and voltage
data. In this section, the local observability of the nonlinear
DAE system (37)-(39) is mathematically studied by linearing
the nonlinear DAE system around an equilibrium state, which
differs from that of the reformulated ODE system in [29]. The
proposed observability analysis can ensure to examine whether
both differential and algebraic states are observable.

Let w = [x z]⊤ ∈ Rnw , nw = nx+nz , be the augmented
state vector. The nonlinear DAE system (37)-(39) is first
linearized with a first-order Taylor series expansion around
an equilibrium point w = w0, which results in a regular linear
DAE system

Eẇ(t) = Aw(t) +Bu(t), (42)
y = Cw(t). (43)

The matrix E is a singular matrix of the form

E =

[
Inx×nx

0nx×nz

0nz×nx
0nz×nz

]
, (44)

where I is the identity matrix. The state matrix A ∈ Rnw×nw

and output matrix C ∈ R3×nw are expressed by

A =

∂f

∂x

∂f

∂z
∂g

∂x

∂g

∂z


w=w0

, C =

[
∂h

∂x

∂h

∂z

]
w=w0

.

The observability conditions are then derived from the
linearized system. If the linearized system is observable at
an equilibrium point w = w0, the nonlinear system is lo-
cally observable. Note that the observability results are only
sufficient. No conclusions can be obtained for the original
nonlinear system if the linearized system is not observable
[37].

Here we apply complete observability (C-observability) to
examine if both differential and algebraic states are observable.
The whole state of the system can be uniquely determined by
the system output measurements if the system is C-observable.
The C-observability for a linear DAE system can be defined
as follows.

Theorem 1 (Complete Observability [39]). The regular linear
DAE system (42)-(43) is complete observable if and only if the
following two conditions hold:
C1. rank

{
[E⊤, C⊤]⊤

}
= nw;

C2. rank
{
[(sE −A)⊤, C⊤]⊤

}
= nw, ∀s ∈ C.

The linear system (42)-(43) is C-observable if and only
if both the algebraic subsystem (fast subsystem) and the
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Fig. 5. The sensitivity of output voltage to system states with a constant
discharge current at 1 A.

dynamic subsystem (slow subsystem) are observable. The C-
observability of the fast subsystem is checked by Condition C1
while the C-observability of the fast subsystem is verified by
Condition C2. A column rank of nx has already been provided
by the singular matrix E. It is easy to check Condition C1
whether ∂h/∂z has column rank nz from (20). Condition C2
needs to be verified through numerical computation of the
generalized eigenvalues of the pair (E,A). Although condition
C2 has to be validated against all s in complex domain, it is
automatically verified when s is not one of the generalized
eigenvalues of pair (E,A).

Although the DAE satisfies the conditions of complete
observability, we still do not know if the system is weakly
or strongly observable. In this regard, Fig. 5 demonstrates the
sensitivity of the system voltage with respect to the dynamic
states. The parameter values for simulation are adopted from
[28], [33] and the model was simulated using a constant
discharge rate at 1 A. As shown in Fig. 5, the sensitivity for
x1 starts to increase after 2500s, while the sensitivities for
x2, x3, x4, and x5 vanish after 3000s, corresponding to the low
plateau region, which indicates relatively weak observability in
this region. This is a crucial property that we will demonstrate
in the numerical studies in Section VI.

Remark 3. Besides C-Observability, there exist other forms
of observability. For instance, impulse observability (I-
Observability) reflects the reconstruction ability of the impulse
behavior, and R-observability guarantees the observability of
any reachable states from the output measurement. Notably,
the regular linear DAE system is I-observable or R-observable
if it is C-observable [39]. One can choose to verify I/R-
Observability, but C-Observability is more comprehensive and
can infer the information of both I and R-Observability.

IV. MODEL PARAMETERIZATION

In this section, the experimental battery tests are first intro-
duced, followed by the parameter identification of the three-
step 0-D electrochemical model using the obtained experimen-
tal data. The results of model validation are then presented to
demonstrate the accuracy of this 0-D electrochemical model.

A. Experimental Design

Experiments for parameter identification were conducted
using a coin cell configuration. The sulfur cathode was fabri-
cated by mixing S@tungsten disulfide/graphene (S@WS2/G),
conductive agent (multiwall carbon nanotubes (CNT)) and
polymer binder (polyvinylidene fluoride, PVDF) in a weight
ratio of 8:1:1. The mass loading of active S in the cathode was
0.986 mg. Lithium metal foil was used as an anode material
and a Celgard 2500 was used as a separator. The electrolyte
used was lithiumbis (trifluoromethane sulfonimide) (LiTFSI: 1
M) in a 1,3 dioxolane/1,2-dimethoxyethane (DOL/DME) (1:1
(v/v)) containing 2wt% Lithium nitrate (LiNO3) additive. The
cell was then tested in a voltage range of 1.7 V to 2.8 V at a
discharge current of 1.651 mA (1C) using a Land battery test
system (CT2001A).

B. Parameter Identification

Prior to parameter identification, the relative variables and
parameters of the 0-D electrochemical model are scaled to
match the physical sizing of the Li-S coin cell using similitude,
as done in [33]. For the 0-D electrochemical model, the model
parameters to be identified and optimized are

θ = [E0
H1, E

0
H2, E

0
L, i

0
H1, i

0
H2, i

0
L, ks, kp, γ, ω,mS ]

⊤, (45)

where EH1, EH2, and EL are the standard potentials, iH1,
iH2, and iL are the exchanged current density, ks is the
shuttle rate constant, kp, γ, and ω are the precipitation-related
parameters. Finally, ms is the total mass of dissolved sulfur in
(25). These parameters have been proved to be highly sensitive
and largely impact the discharge voltage behavior, even in
the weakly observable low plateau region [33]. The objective
function for fitting the parameters is expressed as

R(k) =

√√√√ 1

N

N∑
k=1

(Ve(k)− Vm(k))2, (46)

where R(k) is the root-mean-square error (RMSE), and Ve(k)
and Vm(k) are the measured experimental voltage and the
simulated model voltage at each time step k, respectively.
Therefore, the goal is to minimize the objective function
(46) with respect to the parameter vector. We applied particle
swarm optimization (PSO), an offline gradient-free optimiza-
tion technique [40].

The identified parameter values are enumerated in Table II.
Fig. 6 presents the fitting performance of the three-step 0-
D model against the experimental data used for parameter
optimization. The simulated voltage matches the measured
voltage dynamics well with a RMSE value of 6.44 mV,
especially the slope between the high and low plateaus. That



TABLE II
IDENTIFIED PARAMETER VALUES

Parameters Values Units
E0

H1 2.32 [V]
E0

H2 2.29 [V]
E0

L 2.12 [V]
i0H1 10 [A/m2]
i0H2 2 [A/m2]
iL,0 0.02 [A/m2]
ks 1530 [s−1]
kp 400 [s−1]
γ 2.5 [-]
ω 1.5 [-]
mS 0.65 [g]

Fig. 6. Fitting performance of 0-D model against the experimental data.

is achieved by the additional reaction in the high plateau
(S2−6 ↔ S2−4 ). Then, the model is further validated using
experimental data obtained from a cell with another type of
cathode material (CNT@S). Fig. 7 shows the comparison of
the experimentally measured voltage and the model output
voltage with the identified parameters during the discharge
process. Although the RMSE value increased to 17.22 mV, the
simulated voltage can still capture the essential characteristics
of the experimental voltage curve.

V. STATE OBSERVER DESIGN

In this section, an EKF approach for nonlinear DAE sys-
tems, similar to the algorithm reported in [41], is used for state
estimation. This algorithm applies to measured outputs that are
functions of both differential and algebraic state variables. The
standard EKF algorithm for ODE systems, however, can only
be applied when the differential states are decoupled from the
algebraic ones. Then the algebraic states can be computed as
implicit solutions to the nonlinear algebraic constraints at each
time step.

To enable the implementation of the proposed algorithm for
DAE system, we first transform the nonlinear DAE system
(37)-(39) into discrete-time using a forward Euler’s method,

x(k + 1) = fd(x(k), z(k)) + µ(k), (47)
0 = gd(x(k), z(k), u(k)), (48)

y(k) = hd (x(k), z(k)) + ν(k), (49)

where fd(x(k), z(k)), gd(x(k), z(k), u(k)), and
hd(x(k), z(k)) are the discrete-time versions of (37), (38) and
(39), respectively, fd(x(k), z(k)) = x(k)+∆t · f(x(k), z(k))
with ∆t as the sampling time, x(k) and z(k) are the
discretized differential and algebraic states at time t = k∆t,
respectively, and µ(k) and ν(k) are the process and the

Fig. 7. Validation of the identified 0-D model against experimental data.

Algorithm 1: EKF for Nonlinear DAEs
Inputs: u(k), y(k), k = 1, 2, · · ·
Outputs: x̂(k), ẑ(k), k = 1, 2, · · ·

• At time step k, the algebraic equations of DAE system
are used to propagate the (consistent) algebraic state
estimates to satisfy the algebraic constraints:

g(x̂(k), ẑ(k), u(k)) = 0.

• Given the up-to-date estimates x̂k and consistent
algebraic state estimates ẑk, the differential state
estimates are propagated forward in time using the
nonlinear discrete-time model and corrected through
output error injection as

x̂(k + 1) = x̂(k) + ∆t · f(x̂(k), ẑ(k))
+K(k) (y(k)− h(x̂(k), ẑ(k))) .

• The covariance matrix of the differential state
estimation error is computed by

P (k + 1) = F (k)P (k)F (k)⊤ +Q

−K(k)
(
H(k)P (k)H(k)⊤ +R

)
K(k)⊤,

and the calculation of Kalman gain matrix is given by

K(k) = F (k)P (k)H(k)⊤
(
H(k)P (k)H(k)⊤ +R

)−1
,

where F (k) and H(k) are the linearized state and
output equations with respect to the differential state
evaluated at x̂(k),

F (k) =
∂fd
∂x

∣∣∣∣
x̂(k)

, H(k) =
∂hd

∂x

∣∣∣∣
x̂(k)

.

measurement noises with covariance matrices Q and R,
respectively. The forward Euler’s method has been selected
as a simple-to-implement discretization strategy since it
generates a relatively simple mathematical structure than
implicit methods which significantly benefits the subsequent
design efforts for state observers. Additionally, as index-1
DAEs are in general not stiff, they can be efficiently handled
by Euler’s methods [42]. The EKF designed for system
(47)-(49) is detailed in Algorithm 1. Essentially, algebraic
state estimates that are consistent with the DAE are first
computed numerically. The differential states at the next
time instant are then predicted using both the differential
and algebraic states at time k through the propagation in
time of the nonlinear state function. Then the algorithm
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Fig. 8. Comparison of estimated and true mass of sulfur species (i.e.
the differential states) under a UDDS cycle with measurement noise.

corrects the states via output error injection. Subsequently, the
covariance matrix of the differential states is computed using
the linearized ODE model, followed by the calculation of the
Kalman gain matrix using the covariance matrix and the state
and output matrices from linearized model. Note that this
algorithm only updates the differential state estimates using
the classical Kalman filter approach [43], and the estimated
algebraic states are re-computed to satisfy the nonlinear
algebraic equations at each time step.

VI. NUMERICAL RESULTS

In this section, we conduct studies on simulation and
experiment to demonstrate the performance of the proposed
observer algorithm.

A. Simulation Results

We first present simulation results that validate the proposed
estimation algorithm. We consider an urban dynamometer
driving schedule (UDDS) drive cycle, which has been fre-
quently used in automotive applications due to its highly
dynamic and transient behaviors. It is challenging to ex-
perimentally validate the estimation algorithm because no
experimental UDDS data for Li-S cell is available at this stage.
To address this issue, rather than using experimental UDDS
data, we examine the effects of measurement uncertainties to
mimic the real-world applications by adding a 2% random
error to the simulated UDDS voltage signal to validate the

robustness of the estimation scheme. To the best of our
knowledge, estimation results based on Li-S electrochemical
model under dynamic driving profiles have not been reported
thoroughly in the literature. The current profile is displayed
in Fig. 9(a) with maximum C-rate of 3.73C and mean C-
Rate of 0.94C. The parameter values for the plant model and
state estimator are obtained from [28], [33]. The observer
estimates the differential and algebraic states given the applied
current and simulated voltage. The true initial conditions for
the internal states are w0 = [0.4875 0.1560 0.0065 3 ×
1e−5 3× 1e−5 0.05 0 0]⊤, whereas the observer initial
conditions are initialized with an error of 10%. The values of
the covariance matrices P (0), Q, and R are set as follows:

P (0) = diag([8e−2 9.5e−3 9e−6 5e−6 2e−6]),

Q = diag([5e−14 5e−14 5e−20 5e−23 5e−20]),

R = diag([8e−3 1e−5 1e−5]).

The estimated mass of each sulfur specie is plotted against
their true values in Fig. 8. Fig. 9 illustrates the estimates
for the algebraic states (iH1, iH2, and iL) and the output
voltage (V ) compared to their true values. The estimates of
both the differential and algebraic states quickly converge
to their true values. The estimated output voltage is also
able to track the simulated voltage accurately. These results
demonstrate the estimated states can still converge to their true
values, even with measurement noise,indicating the robustness
of our proposed estimation algorithm under a highly dynamic
scenario, like electric vehicles.

B. Experimental Results
The proposed estimation algorithm is then experimentally

validated in this subsection. The parameter values for both the
plant model and estimator are obtained from the parameter
identification results in Section IV. A constant discharge C-
rate of 1C that used in our experimental was applied to the
plant model for 700 seconds. Note that due to the difficulty in
verifying in-situ the internal states in a real battery, the states
simulated from the electrochemical model with parameters
identified from a real battery were used to emulate the truth
values of the internal states. The initial guess error for the
state estimates of the observer was set to 10%. These results
are generated numerically by tuning the following parameters
in the EKF,

P (0) = diag([2.5e−8 2.5e−8 2e−11 2e−11 2e−11]),

Q = diag([1e−10 1e−10 1e−21 1e−25 1e−21]),

R = diag([1e−5 1e−5 1e−5]),

Fig. 10 reports the state estimation results for the differen-
tial states under a constant 1C discharge current, plotted in
Fig. 11(a). Fig. 11 further compares the estimated algebraic
states and output voltage against their true values. The solid
lines denote true values, and the dashed lines denote estimates.
Since the battery is discharged from a fully charged state, all
state estimates are able to quickly converge to their true values
from 10% initial estimation errors within 100 seconds, thanks
to the high observability in the high plateau (see observability
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Fig. 9. Comparison of the estimated and true algebraic states (iH1,
iH2, and iL) and voltage under a UDDS cycle with measurement noise.

analysis in Fig. 5). However, unsurprisingly, note that the esti-
mates of S2−4 and Sp show slight divergence in the low plateau
region, which is mainly caused by the weak observability of
the Li-S system. To improve the estimation performance in the
low observability region, in addition to tuning the EKF related
parameters such as covariance matrices Q, we could poten-
tially explore a hybrid estimation framework. Specifically, two
EKFs can be individually designed for high plateau and low
plateau coupled with a switching scheme at the intersection
of high-low regions. Another possible pathway to improve
observability is by adding additional sensors to introduce more
measurement signals (e.g., temperature, pressure, strain, etc.).
These options will be exploited in our future studies.

C. SOC Simulation Results
Simulation results for the proposed SOC definition are

evaluated in this section. Our proposed method is based on
the remaining discharge capacity calculation, which depends
on the active sulfur species. We also perform a sensitivity
analysis on the “shuttle effect”. In Li-S cell, the “shuttle effect”
changes the mass evolution behavior of sulfur species by intro-
ducing a self-discharge-like process. This affects the remaining
discharge capacity, and also the related SOC. Fig. 12 presents
simulation results calculated by traditional Coulomb counting
and the proposed method with different shuttle rates at a
constant 1.7A discharge current. The SOC calculated by the
proposed method in the absence of “shuttle effect” shows no

Fig. 10. Comparison of estimated and true mass of sulfur species (i.e.
the differential states) under a 1C discharge cycle.

difference with Coulomb counting. However, when the shuttle
rate is increased to 2 × 10−4, the SOC calculated by the
proposed method decreases much faster. This trend becomes
more pronounced as the shuttle rate increases. That is because
the “shuttle effect” is a self-discharge process that does not
contribute to the reaction current. Therefore, it results in less
remaining discharge capacity. These results demonstrate that
our proposed method can represent the effect of shuttling on
capacity loss and the subsequent SOC evolution. Note that
for Li-ion batteries, the relationship between bulk lithium
concentration in the anode and SOC is one-to-one. This means
that the bulk lithium concentration can be determined once
the SOC is known, and vice versa. However, the relationship
between sulfur species and SOC becomes complicated in Li-
S cells. There are different combinations of sulfur species to
SOC if the SOC is known, which means that the relationship
between them is not one-to-one.



Fig. 11. Comparison of the estimated and true algebraic states (iH1,
iH2, and iL) and voltage under a 1C discharge cycle.

Remark 4. Despite the capability to represent the shuttling
effect on capacity loss and the subsequent SOC evolution
accurately, the SOC calculation scheme cannot be validated
experimentally due ti the difficulty to precisely measure the
mass of sulfur species in real time as a result of the lack of in-
situ characterization techniques. Nevertheless, data generated
from higher-dimensional Li-S electrochemical models may be
considered as the ground truth for validation, which will be
explored in our future works.

VII. CONCLUSION

In this paper, we studied a zero-dimensional electrochemical
model that shows practical use for estimation and control
purposes for next generation high energy density Li-S bat-
teries. A state estimation algorithm for the developed model
has been presented. The observability of this nonlinear DAE
system has been investigated, which indicates that the states
are locally observable, but shows weak observability in the

Fig. 12. SOC values calculated by Coulomb counting and the proposed
methods considering different shuttle rates.

low plateau region. The model is identified and experimentally
validated using the experimental data collected from Li-S
coin cell. An extended Kalman filter-based algorithm is then
adopted to estimate the amount of active sulfur species and the
reaction currents in simulation with dynamic current profile.
The developed estimation algorithm is further validated using
the experimental data. The accuracy of the estimation approach
is demonstrated in both simulation and experiment. Moreover,
we proposed the SOC definition by different sulfur species,
which can well represent the “shuttle effect” and self-discharge
behavior.

Future work will focus on examining the robustness of the
proposed estimation algorithm against the parameter uncer-
tainties. Additionally, reduced-order electrochemical model-
based SOC and SOH estimation approaches will also be
studied.
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